Secreted microvesicular miR-31 inhibits osteogenic differentiation of mesenchymal stem cells
نویسندگان
چکیده
منابع مشابه
Secreted microvesicular miR‐31 inhibits osteogenic differentiation of mesenchymal stem cells
Damage to cells and tissues is one of the driving forces of aging and age-related diseases. Various repair systems are in place to counteract this functional decline. In particular, the property of adult stem cells to self-renew and differentiate is essential for tissue homeostasis and regeneration. However, their functionality declines with age (Rando, 2006). One organ that is notably affected...
متن کاملWnt signaling inhibits osteogenic differentiation of human mesenchymal stem cells.
Human mesenchymal stem cells (hMSCs) from the bone marrow represent a potential source of pluripotent cells for autologous bone tissue engineering. We previously discovered that over activation of the Wnt signal transduction pathway by either lithium or Wnt3A stimulates hMSC proliferation while retaining pluripotency. Release of Wnt3A or lithium from porous calcium phosphate scaffolds, which we...
متن کاملOsteogenic Differentiation of Rat Mesenchymal Stem Cells from Adipose Tissue in Comparison with Bone Marrow Mesenchymal Stem Cells: Melatonin As a Differentiation Factor
Background: Adipose-derived stem cells (ADSC) could be an appealing alternative to bone marrow stem cells (BMSC) for engineering cell-based osteoinductive grafts. Meanwhile, prior studies have demonstrated that melatonin can stimulate osteogenic differentiation. Therefore, we assayed and compared the melatonin effect on osteogenic differentiation of BMSC with that of ADSC. Methods: Mesenchymal...
متن کاملDifferentiation of Mesenchymal Stem Cell toward the Insulin-like Cells with Lentivirus Vector Mir-375
Background & Objective: Type1 diabetes is characterized by autoimmune destruction of pancreatic β cells, leading to reduced insulin secretion. Differentiation of mesenchymal stem cells (MSCs) into β-like cells offers new ways of diabetes treatment. MSCs can be insulated from the human umbilical cord tissue and differentiate into insulin-producing cells. Material & Methods: Human um...
متن کاملSynergistic Effects of BMP9 and miR-548d-5p on Promoting Osteogenic Differentiation of Mesenchymal Stem Cells
Various stimulators have been reported to promote MSC osteogenic differentiation via different pathways such as bone morphogenetic protein 9 (BMP9) through influencing COX-2 and miR-548d-5p through targeting peroxisome proliferator-activated receptor-γ (PPARγ). Whether synergistic effects between BMP9 and miR-548d-5p existed in promoting osteogenesis from MSCs was unclear. In the study, the pot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Aging Cell
سال: 2016
ISSN: 1474-9718
DOI: 10.1111/acel.12484